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Overview

Timeline

• Start date: March 2009  

• End date: ongoing

• Percent complete: ongoing

Budget

• Total project funding

- FY09     $190K
- FY10     $190K
- FY11     $250K

Partners

• ANL, BNL, INL, and 
SNL

• Berkeley program lead: 
Venkat Srinivasan

Barriers Addressed

• Cycle life 

• Abuse tolerance for 
PHEV Li-ion batteries



Objectives\Milestones

• Develop a reliable, inexpensive overcharge protection system.

• Use electroactive polymer for internal, self-actuating protection.

• Minimize cost, maximize rate capability and cycle life of 
overcharge protection for high-energy Li-ion batteries for PHEV 
applications.

Objectives

Milestones

• Report the properties of alternative high-voltage electroactive
polymer candidates (July 2011).

• Report overcharge protection performance of modified polymer
composite separators and cell configurations (September 2011).



• Batteries are overcharged for a variety of reasons:
- Cell imbalance due to manufacturing inconsistencies or temperature/ 

pressure variations during cycling
- Charging at normal rates exceeding electrode capacity
- Charging at a rate too high for one electrode (commonly the anode) without 

exceeding the maximum voltage
- Over-voltage excursions for short or long periods
- Low-temperature operation under high internal resistance 

• Overcharging Li-ion batteries can lead to:
- Cathode degradation, metal ion dissolution, O2 evolution
- Electrolyte breakdown, CO2 evolution
- Li deposition on anode, H2 evolution 
- Overheating, breakdown of anode SEI layer and thermal runaway
- Current collector corrosion
- Explosion, fire, toxics released
- Accelerated capacity/power fade, shortened battery life

Why Overcharge Protection



• “Sandwich-type” configuration 
– electroactive polymer 
impregnated in the separator 
between the battery electrodes

• Parallel configuration –
Electroactive polymer placed 
between the current collectors, 
outside the electrode assembly

Approach 
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Advantages of Our Approach
• Advantages over external methods (such as integrated 
control circuits)

- Inexpensive as only a small amount of polymer needed
- Minimum weight and volume 
- Self-actuated internally for cell balancing

• Advantages over internal methods (such as redox shuttles)
- Good rate capability
- No interference with the cell chemistry
- No solubility and volatility issues 
- Versatile as cell holding potential is varied by the choice of 
polymer, polymer morphology and distribution, system configuration 
- Capable of low temperature protection, no diffusion limitation



Reversible redox couple SOC dependent conductivity

Electroactive Polymers
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• Unique properties of electroactive polymers make them suitable for 
overcharge protection.



P3BT film 

Pt

(+)(-)Li

• Polymer is capable of carrying a large amount of current.

Overcharge Protection Mechanism

• At positive electrode, polymer is not fully oxidized but highly conductive.
• At negative electrode, polymer remains in neutral state, where most of the 
potential drop occurs.
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• Highly reversible redox couple situated above the end-of-
charge voltage of 4 V class cathodes

• Rapid change in electronic conductivity during the redox 
process to establish a steady state potential and create 
negligible self-discharge

• High conductivity at oxidized state for high rate capability (2C 
and above)

• Compatible with cell chemistry, no side reactions

• Stable under aging and cycling conditions for long battery life 
(15 year life, 300,000 Cycles)

• Low cost

Polymer Requirements for PHEV Protection



Redox Potential and Stability

Poly(9,9-dioctylfluorene) 
(PFO)

n

• Onset oxidation voltage is 4.1 V.
• Good reversibility at high voltage.



Redox Potential and Stability
Poly[(9,9-dioctylfluorenyl-2,7-

diyl)-co-(1,4-phenylene)]    
(PFOP)

• Onset oxidation voltage is 4.25 V.
• Slightly improved stability at low voltage.
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Morphology and Rate Capability

• Polymer impregnated into the separator by solution casting. 
• Simple process but non-uniform distribution and poor utilization 
of the polymer.

Celgard 2500 PFOP/Celgard 2500



P3BT

• Aligned nanorods extend the full thickness of the AAO template 
prepared by electrochemical deposition.
• Each polymer nanorod is capable of providing a direct, high-current 
path between the electrodes.

PFO

Morphology and Rate Capability



• Polymer fibers prepared on Al substrate by electrospinning.
• Aspect ratio of the fibers are easily adjusted by synthesis conditions.
• Process is easy to scale up.

Morphology and Rate Capability



• Polymer nanotubes electrochemically deposited in AAO template.
• Pore size and length of the nanotubes tunable.

Morphology and Rate Capability



• Rate capability improved with new polymer morphologies.
• Highest sustainable current density achieved in the nanotube composite. 
• Ten times improvement compared to the previous morphology.

Morphology and Rate Capability

LiPolymer 
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10% P3BT 20% P3BT 

40% P3BT 30% P3BT 
• P3BT/P(VDF-HFP) composite membranes prepared by solution casting.
• Polymer ratio has minimal impact on separator morphology.
• Need to increase density for use as separators.

Polymer Composite Membranes
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• Best rate capability achieved with 40% of electroactive polymer.
• Further optimization is planned.  
• The process will be applied to make composite membranes 
incorporating fibers and nanotubes of the electroactive polymers.

Polymer Composite Membranes
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Overcharge Protection – Spinel

• Overcharge protection with single 
electroactive polymer.
• C/4 rate, 20% overcharged at a 
holding voltage of 4.3 V.
• Long term stability is under further 
evaluation.
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“Swagelok-type” Cell
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Overcharge Protection – Spinel

• Slightly higher discharge capacity in the protected cell. 
• No self-discharge observed.
• Rate capability up to 1 mA/cm2 (2C).
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Overcharge Protection – Gen 2

Li

LiNi0.8Co0.15Al0.05O2

Current Collector

Current Collector

PFOP/Celgard

• C/12 rate, 20% overcharged 
at a holding voltage of 4.4 V.

“Swagelok-type” Cell
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Overcharge Protection – Pouch Cell
Pouch Cell 

“sandwich-type” configuration

• C/7 rate, 20% overcharged at a 
holding voltage of 4.6 V.
• Initial test showed overcharge 
protection for over ten cycles.
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Overcharge Protection – Pouch Cell

• Area ratio between the polymer 
and the electrode is 40:60.
• C/6 rate, 20% overcharged at a 
holding voltage of 4.4 V.
• Lower internal resistance in the 
parallel configuration.
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Collaborations 

• Robert Kostechi (LBNL) – Raman and FTIR 
Spectroscopy

• John Kerr (LBNL) – TGA and DSC

• Vince Battaglia, Marca Doeff (LBNL) – Electrode 
fabrication

• Gao Liu (LBNL) – Polymer synthesis

• Yueguang Zhang (Molecular Foundry) - Electrospining



Future Work

• Prepare composite separators with electroactive 
polymer fibers and nanotubes, and evaluate their rate 
capability and cycle life. 

• Investigate other high-voltage electroactive polymers 
that may be suitable for overcharge protection for 
PHEV batteries.  Optimize their morphology for 
maximum protection.   

• Explore other cell configurations that may lead to 
improved protection and lowered cost.  

• Investigate practical issues in “scaling-up” the 
concept.



Summary
• A high-voltage polymer was found to have improved 

stability at low voltage.  It provided overcharge 
protection for various battery chemistries.

• Polymer nanotubes were found to carry higher 
current densities compared to other morphologies.

• Ways to cast composite separators incorporating 
electroactive polymer were explored.

• Overcharge protection was achieved in pouch cells in 
both “sandwich-type” and parallel configurations.  
The latter was found to have lowered holding 
potential due to reduced internal resistance.  



Technical Back-Up Slide



Poly(3-butylthiophene)
(P3BT, Vonset = 3.2 V)
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Oxidation Potentials of Studied Polymers

Poly[(9,9-dioctylfluorenyl-
2,7-diyl)-co-(1,4-phenylene)]    

(PFOP, Vonset= 4.25 V)
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