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Overview

 Start – Oct. 2008
 Finish – Sep. 2014 
 ~45% Complete

 An overwhelming number of materials are being 
marketed by vendors for Lithium-ion batteries. 

 No commercially available high energy material to 
meet the 40 mile PHEV application established by 
the FreedomCAR and Fuels Partnership.

 The impact of formulation and fabrication on 
performance of electrode materials with a broad 
variation of chemical and physical properties.

Timeline

Budget

Barriers

 Total project funding in 
FY2010

–Screening: $350K

–Streamlining: $300K

Partners and Collaborators
 Andrew Jansen (Argonne National Laboratory)

 Sun-Ho Kang (Argonne National Laboratory)

 Dennis Dees (Argonne National Laboratory)

 Jai Prakash and Aadil Benmayza (Illinois Institute of Technology)
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Project I: Objectives of Material Screening

 To identify and evaluate low-
cost cell chemistries that can 
simultaneously meet the life, 
performance, abuse tolerance, 
and cost goals for Plug-in HEV 
application.

 To enhance the understanding
of advanced cell components 
on the electrochemical 
performance and safety of 
lithium-ion batteries. 

 Identification of high energy 
density electrode materials is 
the key for this project.
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Approach: Test Protocol Development

 Test protocol has been 
defined in “Battery Test 
Manual for Plug-in Hybrid 
Electric Vehicles” by INL 
2010.

 Accordingly, test procedure 
and method have been 
translated to fit the material 
screening purpose. 

Characteristics at EOL 
(End of Life)

 High 
Power/Energy 
Ratio 

High 
Energy/Power 
Ratio

Reference Equivalent 
Electric Range miles 10 40
Peak Pulse Discharge 
Power (10 sec) kW 45 38
Peak Regen Pulse Power 
(10 sec) kW 30 25
Available Energy for CD 
(Charge Depleting) Mode, 
10 kW Rate kWh 3.4 11.6
Available Energy for CS 
(Charge Sustaining) 
Mode kWh 0.5 0.3
Maximum System Weight kg 60 120
Maximum System Volume Liter 40 80

USABC Requirements of 
Energy Storage Systems for PHEV

Material 
Identification

Material 
Characterization

(XRD, SEM, BET, Particle size, etc.)

Electrochemical
Evaluation

Specific  
Capacity 
(energy)

Irreversible
Capacity

Loss

Hybrid
Pulse
Power

Characterization

Rate
Capability

Thermal 
Investigation

Capacity
Retention 
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Technical Accomplishments
 Several high energy electrode couples, surface treated natural graphite and composite 

cathode materials, have been identified and studied. 
– Test results have been reported to suppliers.
– Information is also delivered to cell fabrication team under ABR program (A. Jansen)

 Other cell components, such as electrolyte, redox shuttle, conductive additive, binders, etc., 
are also investigated. 

Fluorinated electrolyte (Daikin)

Conductive
additive

Composite cathode

High voltage spinel

Surface coated graphite 
(ConocoPhillips)

Surface modified graphite
(Hitachi Chemical)

Redox shuttle (ANL)

Carbon black (Cabot)

Copper (Somer Thin Strip)

Carbon coated Aluminum 
(Showa Denko)
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Highlight 1: Composite Cathode Materials 
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Li/NCM cell
4.6V~2.0V
0.343mA
1st charg: 300mAh/g
1st disch: 249mAh/g
ICL: 17%

Toda Kogyo
0.5Li2MnO3 • 0.5LiNi0.37Co0.24Mn0.39O2

C/10 C/3
Average voltage V 3.64 3.58
Specific capacity mAh/g 246 222
ICL % 17
Energy density mWh/g

full cycle 4.6~2.0 897 790
Capacity retention % (50 cyc) 90

(1-x)Li2MnO3 xLiMO2 cathode materials, 
where M is a collection of transition metals 
and the average oxidation state of M is 
trivalent, have been used to increase the 
energy density for advanced batteries. 

The boost in energy density is due to the 
electrochemical activation of Li2MnO3
domains in the composite material.  
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Rate Performance of Composite Cathode Material

 Excellent rate performance up to 1C with 194 mAh/g.

 Small impedance during HPPC between 10% and 70% DOD. 
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Voltage Depression of Composite Cathode Material
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 Composite cathode material shows very 
good capacity retention during cycling. 

 However, voltage depression during 
cycling was observed, which may affect 
the energy density. 
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Thermal Property of Composite Cathode 

 DSC results indicates that the on-set temperature of exothermic reaction of the fully charge 
composite is 215oC, same as LiNi0.8Co0.15Al0.05O2 at 4.2V.

 The total heat generation of fully charged composite is about 1184J/g, which is less than 
LiNi0.8Co0.15Al0.05O2 at 4.2V. 
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Highlight 2: Fluorinated Electrolyte from Daikin

Electrolyte=Solvent + Salt

LiNi0.8Co0.15Al0.05O2
•High Current Overcharge
•High Temperature

Fluorinated electrolyte may address safety concerns caused by
heat and pressure build-up within the cell and the flammable 
electrolyte, since it has:

 Higher operational voltage window
 Lower reactivity to anode and cathode
 Thermally stable

10
Illinois Institute of Technology
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Electrolyte composition:
Gen II: 1.2 M LiPF6 EC/EMC (3/7)
FE1:      1.2M LiPF6 FEC/EMC (3/7)

Electrolyte conductivity

[Fluorinated Materials for Energy Conversion
T Nakajima and H. Groult, 2005]

C-H : Binding energy: 417kJ/mol
C-F : Binding energy: 486kJ/mol
Electron negativity:  H /2.1; F/4.0

Fluorinated 
Solvent 

Safer Electrolyte Conductivity 
(mS/cm)

GenII 1.2M LiPF6 in EC/EMC (3:7) 8.2

FE 1.2M LiPF6 FEC/EMC/D2 (2:4:4)    7.2

     

Electrolyte Conductivity 
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GenII 1.2M LiPF6 in EC/EMC (3:7) 8.2

FE 1.2M LiPF6 FEC/EMC/D2 (2:4:4)    7.2

     

 

    

       

FE1 1.2M LiPF6 FEC/EMC(3:7)   4.8
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 Comparable 
performance at 
lower rates.

 At high rates 
especially at 1C 
and 2C the 
cathode with 
Gen2 electrolyte 
shows better 
performance 
than FE1.
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Onset Temperature 
(˚C) ΔH(J/g)

State of 
charge (%) Gen2 FE1 Gen2 FE1

100 206 220 1183 1009

80 209 232 1100 788

40 238 273 624 243

20 252 280 394 240

DSC Results of Fluorinated Electrolyte
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 Higher on-set temperature 

and less total heat generation 
were observed to FE1 
electrolyte at various state of 
charge compared to Gen2 
electrolyte. 
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Summary
 Composite cathode materials 

0.5Li2MnO3 0.5LiNi0.37Co0.24Mn0.29O2
– Deliver 897Wh/kg, more than 70% of 

conventional LiCoO2. 
– Good rate performance: 210mAh/g @ C/2.
– Area specific impedance is about 40 ohm-cm2

at 50% DOD.
– 91% capacity retention within 40 cycles.
– Less heat generation at fully charged state 

compared to NCA.

 Daikin’s Fluorinated ethylene carbonate 
(FEC)

– Less capacity is delivered @ 1C due to low 
conductivity of FEC. 

– DSC results indicate better thermal stability at 
various state of charge.

 Surface modified graphites from various 
vendors have been investigated. They 
all show high capacity, good rate 
capability and thermal stability and will 
be used for cell build at ANL.

 Other cell components, such as redox 
shuttle, binder, separator, carbon 
additive, current collector have been 
studied.

 To continue to search and evaluate 
the high energy density electrode 
couples to meet the performance 
and cost goal for PHEV applications. 

– (1-x)Li2MnO3 xLiMO2 
– Surface modified graphite
– Silicon and its composite
– Hard carbon (Kureha)

 Other available cell chemistries for 
lithium battery

– Electrolyte, additives, redox shuttles
– Separators 
– Current collector
– Binder
– Conductive additives

 Support electrode and cell build 
project under ABR program

– Electrode thickness 
 Support material scale up 

program at ANL

Future Plans



Vehicle Technologies ProgramVehicle Technologies Program 15

Project II: Objectives and Approach of 
Streamlining the Optimization of Electrode

 To establish the scientific basis needed to streamline the lithium-ion 
electrode optimization process. 

– To identify and characterize the physical properties relevant to the electrode 
performance at the particle level.

– To quantify the impact of fundamental phenomena associated with electrode 
formulation and fabrication (process) on lithium ion electrode performance. 

Particle
size

Pore 
structure

Surface 
area

Particle 
morphology

material

Power

Energy 

output
Conductive

additive

Porosity 

laminate

Binder 

Thickness 

Current
collector

Separator

cell

Tab

General approachNew approach
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Technical Accomplishments

 Single particle conductivity was found to be higher than 
powder conductivity in general. The contact resistance 
between particles should be addressed for electrode 
optimization.

 Composite electrode made of 0%, 1% and 3% carbon coated 
Li1+xNi1/3Co1/3Mn1/3O2 (NCM) was intensively investigated. 
Interfacial resistance was found to be  dominant for the 
composite electrode using aluminum substrate. 

 Nano electrical imaging was carried out on composite 
electrode to better understand the conductive network. It 
was found that the full utilization of conductive carbon 
additives is necessary to reduce the content of carbon and 
improve conductivity.
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Impact of Electrode Electronic Conductivity
– Impedance Simulation of Gen 3 (NCM) Positive Electrode 5C HPPC

 >0.01 (ohm cm)-1: electronic conductivity is much greater than the ionic conductivity and does 
not impact electrode impedance

 0.001-0.01 (ohm cm)-1: electronic conductivity is comparable to the ionic conductivity

 <0.001 (ohm cm)-1: electronic conductivity is much less than the ionic conductivity and 
significantly impacts electrode impedance
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conductivity, the composition 
of the conductive additive 
should be tailored to meet the 
power and energy 
requirements of lithium ion 
batteries. 

From Dennis Dees’ model (Argonne)
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Electronic Conductivity Investigation

 Single particle and powder conductivity measurements demonstrate that contact 
resistance is the key for conductivity of composite electrode. 

 In order to address the interfacial resistance between the particle, and current 
collector, carbon coated Li1+xNi1/3Co1/3Mn1/3O2 has been studied.
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Effects of Carbon Coating on Morphology of 
Li1+xNi1/3Co1/3Mn1/3O2 (NCM)
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 The powders are 
subjected to a 
centrifugal force and 
are securely pressed 
against the inner wall of 
rotating casing. 

 The powders are 
further subjected to 
various mechanical 
forces, such as 
compression and shear 
forces, as they pass 
through a narrow gap 
between the casing wall 
and the press head. 

 As a result, smaller 
guest particles are 
dispersed and bonded 
onto the surface of 
larger host particles 
without using binder of 
any kind.

SEM

NCM

NCM1

NCM3

Hosokawa
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Cross Section of NCM Electrode

 Continuous carbon pathway was observed for NCM0 with 4% carbon 
additive. 

 But, little or longer pathway for NCM3 electrode with only 1wt% 
additional carbon additives.  

NCM0-24 NCM3-04
Al Al

surface surface

Cross section Cross section

NCM/CB/PVDF
84/ 4 /4

NCM3(w/3%cb)/CB/PVDF
87/ 1 /4
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Electrode Conductivity by 4 Probe Method

 Electrode composition*:
– Active: 84%, 
– SFG-6: 4% 
– Carbon: 4% (*including coated 

carbon);  
– PVDF: 8%

Aluminum
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 The resistance of the NCM3 electrode with 1wt% 
additional carbon on aluminum foil shows less 
resistance before calendering. Resistances of both 
electrodes NCM0 and NCM3 on aluminum 
decreases after calendering. 

 For the electrode on polyester substrate, the sheet 
resistance of the NCM3 electrode is higher. The 
electrode sheet resistance increases after 
calendering for both NCM0 and NCM3. 

 Therefore,  interfacial resistance is dominant for the 
composite electrode using aluminum substrate. The 
contact resistance between the particles and 
substrate was small for carbon coated sample. 

substrate
interface
sample

i
V
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4 Probe Modeling of Composite Electrode

 The conductivity 
calculated from modeling 
is consistent to the  4 
probe measurement.

 The validated model will 
be used to determine the 
interfacial resistance 
between the composite 
layer and substrate.
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Nano-Electrical Imaging of Electrode using AFM

 3% carbon coated NCM + 
4% carbon + 7% PVDF

 Higher current indicates 
higher conductivity.

 There are two distinct 
regions in the image: 
isolated blue rocky-like 
(NCM) and continuous 
patches (CB + PVDF).

 The conductivity various 
with CB/PVDF region, 
which should be further 
studied. 

Current: purple/pink < green < yellow < red

AFM by Bruker (Veeco)
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Future Plans

 The electronic conductivity of 
composite electrode made of carbon 
coated NCM was intensively 
investigated. 

– The composite electrode with carbon 
coated particles has better interfacial 
conductivity between composite layer 
and substrate, but higher sheet 
resistance compared with uncoated 
particles.

– The electrode with uncoated particles 
has lower interfacial conductivity but 
higher conductivity within the 
composite sheet. 

– The 4 probe model was validated and 
the interfacial resistance will be 
studied.

 Nano electrical image indicates that 
the carbon additive is not fully utilized 
to form the conductive matrix.

 Carbon coating impact on the cathode 
performance will be continued. 

– The amount of coating, additional 
carbon additive, and binder effect will 
be investigated.

– This 4 probe modeling will be utilized 
to study the interfacial resistance. 

 Electrode optimization on electronic 
conductivity will be address through

– Percolation theory

– Optimization of composite electrode 
conductivity 

Summary
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