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Overview
Timeline Barriers
= Start: October 2012 =  Development of a PHEV and EV batteries
" Finish: September 2014 that meet or exceed DOE/USABC goals.
Partners (Collaborators)
= ORNL
= NREL
= BNL
Budget = |BNL
= FY2013: 54000 K = JPL

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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N
Project Objectives - Relevance

* Improve materials level performance of Li- and Mn-rich layered
transition metal oxide cathodes (LMR-NMC) necessary to
significantly improve upon existing Li-ion cathodes (pack level cost
and energy density)

* Specific focus on the voltage fade phenomena present in the
current generation of LMR-NMC materials.

Milestones

e Definition of the problem and workable limitations of the
composite cathode materials (Dec 2012) complete

e Establish formal test protocols to determine and quantify voltage
fade (Oct2012) complete

* Data collection and review of compositional variety available using
combinatorial methods. (Oct 2013) on target

* Go/No-Go for post treatment/system level fixes. (March 2012)
complete

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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Electrochemistry of a

Li/0.3Li,Mn0,+0.7LiMn, -Ni, -0, Cell
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= Theoretical charge capacity (total): 342 mAh/g

=  Capacity (10th cycle): 254 mAh/g

Coulombic efficiency: 82% (1st cycle); >99% (10th cycle)

400

Theoretical capacity of LiMn0.5Ni0.502 Component: 184 mAh/g
Theoretical capacity of Li2MnO3 Component: 158 mAh/g

1st cycle
irreversible
capacity loss




I
Energy output (discharge) for 0.5Li,Mn0,°0.5LiNi, ;,:Mn, ;,:C0,,:0, Vs. Li
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Energy loss is a serious problem in this material
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Energy output (discharge) for 0.5Li,Mn0,°0.5LiNi, ;,:Mn, ;,:C0,,:0, Vs. Li
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Voltage fade is the most pressing problem!
(positive resistances minimized by electrode design and additives)
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Cell Valtage (V)

Voltage Profiles shape changes
LMR-NMC, 4.6-2.0V, 16 mA/g, RT
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: » This is not just energy density issue, but also battery management issue.
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The Team

Tenant (NREL)
Nanda (ORNL) Synthesis . Characterization
Chen (LBNL)

B
ugga (JP Abouimrane Croy Balasubramanian

Belharouak Ingram Miller
Johnson Chen Ren

Thackeray Theory Vaughey Yang (BNL)
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lddir" gareno

Bloom Persson Trahey
(LBNL)

Abraham
Dees
Gallagher
Wu

Electrochemistry,
Modeling and
Analysis



The Approach

= Ateam that will share data and expertise to “fix” voltage fade in the LMR-
NMC cathode materials. This will be a single team effort — not multiple PI’s
working independently on the same problem.

— Definition of the problem and workable limitations of the composite
cathode materials.

— Data collection and review of compositional variety available using
combinatorial methods.

— Modeling and Theory.

— Fundamental characterization of the composite cathode materials.

— Understand the connections between electrochemistry and structure.
— Synthesis.

— Post treatment/system level fixes.



LMR-NMC cathode material performance targets

Target set at pack level: 40kWh, 100 kW 360V
= Performance targets necessary

to ensure final material is still
valuable 8000 -

8500

— Based on out-performing next
best cathode option ( )

7500 -

= Higher capacity allows for
slightly lower average OCV
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= Cathode capacities and OCVs
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Battery Price to the OEM, USS

: : T~.. 225
required for meaningful advance: 250
_ 275 mAh/g and V. >3.55V vs Li 6000 - Performance target for LMRNMC 275
avg ’ cathode materials
— 250 mAh/gand V,, >3.45V vs Li
: 5500 . . . . .
— 275 mAh/gand V,,>3.35V vs L 3.4 3.5 3.6 3.7 3.8 3.9

Average Cathode OCV, V vs Li

Battery price calculated using BatPaC for an advanced
Li-ion battery with a silicon based anode material.

Chemical Sciences and Engineering Division E5189 Ga I Iagher
a 10



How Do We Measure Voltage Fade?

Standardized test protocol

Measure average voltage

— Energy / Capacity = Avg Voltage

— Estimates resistance contribution
— Utilizes low currents w/ interrupts

Excel Macro created to
automate data analysis

Fit fade to paralinear kinetics for
comparisons

Goal is to measure
thermodynamic changein a
reasonable time frame

Chemical Sciences and Engineering Division

Cell Potential, V

4.7

»
)

w
~

w
[N}

2.7

50 100

150 200
Capacity, mAh/g

Potential, V

4.2

w
o

w
-

3.4

3.2

——Avg. V (D)

-=Avg. V-R(D) |

-+Avg. V (C)
—<Avg. V-iR (C)

!

30 40

Cycle count

ES188 Abraham

60

11




How Do We Measure Voltage Fade?

Standardized test protocol [ — ||
Measure average voltage T \

— Energy / Capacity = Avg Voltage

— Estimates resistance contribution
— Utilizes low currents w/ interrupts -

Excel Macro created to 7 e ‘
automate data analysis \ Thevo
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Combinatorial Sol-gel syntheses
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Database for ALL voltage fade systems

6 Voltage Fade Project Database 8 View ontours
Argonne '

NATIONAL LABORATORY 1
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What are we learning?
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Kinetics of voltage fade is not simple 15t or 2" order reaction mechanism
Vehicle Technologies Program I Bloom
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Kinetics of voltage fade depend on
composition
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x=kp/klI*In[ kp / (kp-kl{x-kl*t})], where x is the dependent parameter (rel. change in avg V) and t is time
(cycle count); kl=linear rate constant; kp=parabolic rate constant

Modeli ki i luci h hani
odeling work is required to elucidate the mechanism ES190

Vehicle Technologies Program
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Does Hysteresis have anything to do with VF?

——QCV from GITT C/500 equivalent
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N
Coatings - are they effective for VF?

Go No-Go for March 2012

4.5
Data will be collected wbo
with voltage fade -

protocols and analysis

will be carried out

—s—bare cathode

Average voltage (v)

. —=— AIF, coated cathode
using standard 25F
procedures. 20 S S S—
0 20 40 60 80 100
Cycles
Average voltage vs. cycling of uncoated, and AlF; coated LMR-NMC
— Mn dissolution mitigated? ”some improvement in avg. voltage retention
) was observed with AlF; coating”
— Al surface doplng ? - courtesy Amine DOE AMR 2012

Data from multiple institutions was used for the down select

Chemical Sciences and Engineering
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Surface treatments or Coatings - are they
effective for VF? NO GO work stopped.
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Next Go No-Go - Synthesis Method does it matter?

Co-precipitation
\

hydroxide

oxalate ca rbonat

20 um
lithiation

10 um 10 um
1 Others: sol-gel, combustion (glycine-nitrate), & direct solid state

Vehicle Technologies Program E5190 l. Belharouak, D. Klm, H. Wu
S Help from Chen (LBNL) 2



Things we need to understand.

What is the cause of the excess capacity?
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Vehicle Technologies Program

é 21



HR-SXRD study of activated HE5050

= HE5050 has the C2/m symmetry. =i | WRD=113%, Rp=8.4%, X'=6.62 |- 5
* The material that was charged to | c2/m -
4.3V and dischargedto 2.0V~ | e 03003(0) A and B105.236(3
showed almost identical XRD P |deg, v=201.179(3) A
pattern to the HE5050, except | W
slightly broadened peaks. L i Li.l_u._..._.._.._

—— HE5050 -
-~ HE5050_4.7V-2V e

- _4}_5__ . . A
(003)!: ,

—— HES5050_4.3V-2V

1y e > The activated
o PR 1 e [HE5050(4.7V-2V)]
Sl |7 T 012 become structurally
(006) !
| L_D&_/)Q\ AN heterogeneous, or
phase separated.

20 (°)
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Neutron pair-distribution-function (NPDF) study

= Neutrons are sensitive to transition-metal elements and Li ions

(a)

» NPDF study showed | L JU -
that not only the | " e
local structure but
also the long-range
structural coherence
may play an
important role in the
electrochemical
performance.

Gr)

R{A)

ES189, ES194 and ES190



N
Future Work on characterization will be at single

particle level

Develop and exploit coordinated characterization to correlate electrochemical
behavior and structure at the micro- and nano-scale

e obtain statistically reliable cycling data from single particles of

0.5 Li,MnO, « 0.5 LiMn 3,cNiq 57:C0q »:0,

- assess voltage fade in single particles and particle-to-particle
variations, use insight to help interpretation of full cell measurements

e implement operando approach for
characterization of single grains
during electrochemical cycling,
especially at the TEM scale, to
correlate with structural evolution

- move the challenge for
characterization from billions of
particles in a coin cell to the
single particle & single grain level Project Id: ES 186

24



Theory is helping discriminate different
possible mechanisms for Voltage fade.

e.g. Domain size and shape influence VF?
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Electrochemical insertion of 2H ?
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Voltage fade is not caused by protons
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N
Theory-Synthesis interaction. How can dopants help?

Theory predicts and then we make.

= Li,M’O, doping
— Modulate oxygen loss (lattice instability) and retard spinel conversion
in domain
e Tidoping; strong Ti-O bonds
e Ru doping; Ru not known to form spinels
= LiMO, doping
— Li,MnO; domain to Bil; prototype structure followed to Cdl, layered

structure
— Effect the diffusion of TM cations into back-fill of vacancies left by Li
removal - ™

AYA AYA AYA
VAV, VAV WAV

WA AVA AYA
Ny v
WA AVA AYA
e v Wy

- W

Li,MnO, [Bil,) cdl,
S (_ p) Li) (-O) ES190 and ES193




Example is the Design of systems that prevent

spinel transformation via Na exchange.

A I
Li/Mn/MNi Li
A

C g & 8 & |
. i N
N & 0080
Y RV VAN
. @ O
.
03 — Li,MnO,

Composite material

Synthesis: 03 P> 02

(2) Na,y[Liy,Niy,sMn, ,]O,+ LiBr — Li, [Li,,Ni;,;Mn,,;]O, + NaBr
P2 refluxing hexanol 0?2
(O2stacked) 0.5Li,MnO,e0.5LiNi, -Mn, O,
ES190 28




Future work

BUnderstand the cause of voltage fade.

=Determine the origin of the high capacity in
the LMR-NMC materials.

=Continue aggressive down selects focused
on voltage fade issues.

="\What does hysteresis have to do with
Voltage Fade ?

"Understand compositional control of
voltage fade.
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